Metamath Proof Explorer


Theorem pm10.541

Description: Theorem *10.541 in WhiteheadRussell p. 155. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion pm10.541 x φ χ ψ χ x φ ψ

Proof

Step Hyp Ref Expression
1 bi2.04 φ ¬ χ ψ ¬ χ φ ψ
2 1 albii x φ ¬ χ ψ x ¬ χ φ ψ
3 19.21v x ¬ χ φ ψ ¬ χ x φ ψ
4 2 3 bitri x φ ¬ χ ψ ¬ χ x φ ψ
5 df-or χ ψ ¬ χ ψ
6 5 imbi2i φ χ ψ φ ¬ χ ψ
7 6 albii x φ χ ψ x φ ¬ χ ψ
8 df-or χ x φ ψ ¬ χ x φ ψ
9 4 7 8 3bitr4i x φ χ ψ χ x φ ψ