Metamath Proof Explorer


Theorem pm10.541

Description: Theorem *10.541 in WhiteheadRussell p. 155. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion pm10.541 xφχψχxφψ

Proof

Step Hyp Ref Expression
1 bi2.04 φ¬χψ¬χφψ
2 1 albii xφ¬χψx¬χφψ
3 19.21v x¬χφψ¬χxφψ
4 2 3 bitri xφ¬χψ¬χxφψ
5 df-or χψ¬χψ
6 5 imbi2i φχψφ¬χψ
7 6 albii xφχψxφ¬χψ
8 df-or χxφψ¬χxφψ
9 4 7 8 3bitr4i xφχψχxφψ