Metamath Proof Explorer


Theorem pm11.6

Description: Theorem *11.6 in WhiteheadRussell p. 165. (Contributed by Andrew Salmon, 25-May-2011)

Ref Expression
Assertion pm11.6 xyφψχyxφχψ

Proof

Step Hyp Ref Expression
1 excom xyφψχyxφψχ
2 an32 φψχφχψ
3 2 2exbii yxφψχyxφχψ
4 1 3 bitri xyφψχyxφχψ
5 19.41v yφψχyφψχ
6 5 exbii xyφψχxyφψχ
7 19.41v xφχψxφχψ
8 7 exbii yxφχψyxφχψ
9 4 6 8 3bitr3i xyφψχyxφχψ