Metamath Proof Explorer


Theorem pm13.183

Description: Compare theorem *13.183 in WhiteheadRussell p. 178. Only A is required to be a set. (Contributed by Andrew Salmon, 3-Jun-2011) Avoid ax-13 . (Revised by Wolf Lammen, 29-Apr-2023)

Ref Expression
Assertion pm13.183 AVA=Bzz=Az=B

Proof

Step Hyp Ref Expression
1 eqeq1 y=Ay=BA=B
2 eqeq2 y=Az=yz=A
3 2 bibi1d y=Az=yz=Bz=Az=B
4 3 albidv y=Azz=yz=Bzz=Az=B
5 eqeq2 y=Bz=yz=B
6 5 alrimiv y=Bzz=yz=B
7 stdpc4 zz=yz=Byzz=yz=B
8 sbbi yzz=yz=Byzz=yyzz=B
9 eqsb1 yzz=By=B
10 9 bibi2i yzz=yyzz=Byzz=yy=B
11 equsb1v yzz=y
12 biimp yzz=yy=Byzz=yy=B
13 11 12 mpi yzz=yy=By=B
14 10 13 sylbi yzz=yyzz=By=B
15 8 14 sylbi yzz=yz=By=B
16 7 15 syl zz=yz=By=B
17 6 16 impbii y=Bzz=yz=B
18 1 4 17 vtoclbg AVA=Bzz=Az=B