Metamath Proof Explorer


Theorem pm14.18

Description: Theorem *14.18 in WhiteheadRussell p. 189. (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion pm14.18 ∃! x φ x ψ [˙ ι x | φ / x]˙ ψ

Proof

Step Hyp Ref Expression
1 iotaexeu ∃! x φ ι x | φ V
2 spsbc ι x | φ V x ψ [˙ ι x | φ / x]˙ ψ
3 1 2 syl ∃! x φ x ψ [˙ ι x | φ / x]˙ ψ