Metamath Proof Explorer


Theorem pm14.18

Description: Theorem *14.18 in WhiteheadRussell p. 189. (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion pm14.18 ∃!xφxψ[˙ιx|φ/x]˙ψ

Proof

Step Hyp Ref Expression
1 iotaexeu ∃!xφιx|φV
2 spsbc ιx|φVxψ[˙ιx|φ/x]˙ψ
3 1 2 syl ∃!xφxψ[˙ιx|φ/x]˙ψ