Metamath Proof Explorer


Theorem pm2.38

Description: Theorem *2.38 of WhiteheadRussell p. 105. (Contributed by NM, 6-Mar-2008)

Ref Expression
Assertion pm2.38 ψχψφχφ

Proof

Step Hyp Ref Expression
1 id ψχψχ
2 1 orim1d ψχψφχφ