Metamath Proof Explorer


Theorem pm2.43a

Description: Inference absorbing redundant antecedent. (Contributed by NM, 7-Nov-1995) (Proof shortened by Mel L. O'Cat, 28-Nov-2008)

Ref Expression
Hypothesis pm2.43a.1 ψφψχ
Assertion pm2.43a ψφχ

Proof

Step Hyp Ref Expression
1 pm2.43a.1 ψφψχ
2 id ψψ
3 2 1 mpid ψφχ