Metamath Proof Explorer


Theorem pm2.61da2ne

Description: Deduction eliminating two inequalities in an antecedent. (Contributed by NM, 29-May-2013)

Ref Expression
Hypotheses pm2.61da2ne.1 φ A = B ψ
pm2.61da2ne.2 φ C = D ψ
pm2.61da2ne.3 φ A B C D ψ
Assertion pm2.61da2ne φ ψ

Proof

Step Hyp Ref Expression
1 pm2.61da2ne.1 φ A = B ψ
2 pm2.61da2ne.2 φ C = D ψ
3 pm2.61da2ne.3 φ A B C D ψ
4 2 adantlr φ A B C = D ψ
5 3 anassrs φ A B C D ψ
6 4 5 pm2.61dane φ A B ψ
7 1 6 pm2.61dane φ ψ