Metamath Proof Explorer


Theorem pm2.61da2ne

Description: Deduction eliminating two inequalities in an antecedent. (Contributed by NM, 29-May-2013)

Ref Expression
Hypotheses pm2.61da2ne.1 φA=Bψ
pm2.61da2ne.2 φC=Dψ
pm2.61da2ne.3 φABCDψ
Assertion pm2.61da2ne φψ

Proof

Step Hyp Ref Expression
1 pm2.61da2ne.1 φA=Bψ
2 pm2.61da2ne.2 φC=Dψ
3 pm2.61da2ne.3 φABCDψ
4 2 adantlr φABC=Dψ
5 3 anassrs φABCDψ
6 4 5 pm2.61dane φABψ
7 1 6 pm2.61dane φψ