Metamath Proof Explorer


Theorem pm2.61dane

Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 30-Nov-2011)

Ref Expression
Hypotheses pm2.61dane.1 φ A = B ψ
pm2.61dane.2 φ A B ψ
Assertion pm2.61dane φ ψ

Proof

Step Hyp Ref Expression
1 pm2.61dane.1 φ A = B ψ
2 pm2.61dane.2 φ A B ψ
3 1 ex φ A = B ψ
4 2 ex φ A B ψ
5 3 4 pm2.61dne φ ψ