Metamath Proof Explorer


Theorem pm2.61dane

Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 30-Nov-2011)

Ref Expression
Hypotheses pm2.61dane.1 φA=Bψ
pm2.61dane.2 φABψ
Assertion pm2.61dane φψ

Proof

Step Hyp Ref Expression
1 pm2.61dane.1 φA=Bψ
2 pm2.61dane.2 φABψ
3 1 ex φA=Bψ
4 2 ex φABψ
5 3 4 pm2.61dne φψ