Metamath Proof Explorer


Theorem pm2.74

Description: Theorem *2.74 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005) (Proof shortened by Andrew Salmon, 7-May-2011)

Ref Expression
Assertion pm2.74 ψφφψχφχ

Proof

Step Hyp Ref Expression
1 orel2 ¬ψφψφ
2 ax-1 φφψφ
3 1 2 ja ψφφψφ
4 3 orim1d ψφφψχφχ