Metamath Proof Explorer


Theorem pm4.52

Description: Theorem *4.52 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 5-Nov-2012)

Ref Expression
Assertion pm4.52 φ¬ψ¬¬φψ

Proof

Step Hyp Ref Expression
1 annim φ¬ψ¬φψ
2 imor φψ¬φψ
3 1 2 xchbinx φ¬ψ¬¬φψ