Metamath Proof Explorer


Theorem pm4.52

Description: Theorem *4.52 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 5-Nov-2012)

Ref Expression
Assertion pm4.52 φ ¬ ψ ¬ ¬ φ ψ

Proof

Step Hyp Ref Expression
1 annim φ ¬ ψ ¬ φ ψ
2 imor φ ψ ¬ φ ψ
3 1 2 xchbinx φ ¬ ψ ¬ ¬ φ ψ