Metamath Proof Explorer


Theorem pmapsubclN

Description: A projective map value is a closed projective subspace. (Contributed by NM, 24-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pmapsubcl.b B=BaseK
pmapsubcl.m M=pmapK
pmapsubcl.c C=PSubClK
Assertion pmapsubclN KHLXBMXC

Proof

Step Hyp Ref Expression
1 pmapsubcl.b B=BaseK
2 pmapsubcl.m M=pmapK
3 pmapsubcl.c C=PSubClK
4 eqid AtomsK=AtomsK
5 1 4 2 pmapssat KHLXBMXAtomsK
6 eqid 𝑃K=𝑃K
7 1 2 6 2polpmapN KHLXB𝑃K𝑃KMX=MX
8 4 6 3 ispsubclN KHLMXCMXAtomsK𝑃K𝑃KMX=MX
9 8 adantr KHLXBMXCMXAtomsK𝑃K𝑃KMX=MX
10 5 7 9 mpbir2and KHLXBMXC