Metamath Proof Explorer


Theorem pnfaddmnf

Description: Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion pnfaddmnf +∞ + 𝑒 −∞ = 0

Proof

Step Hyp Ref Expression
1 pnfxr +∞ *
2 mnfxr −∞ *
3 xaddval +∞ * −∞ * +∞ + 𝑒 −∞ = if +∞ = +∞ if −∞ = −∞ 0 +∞ if +∞ = −∞ if −∞ = +∞ 0 −∞ if −∞ = +∞ +∞ if −∞ = −∞ −∞ +∞ + −∞
4 1 2 3 mp2an +∞ + 𝑒 −∞ = if +∞ = +∞ if −∞ = −∞ 0 +∞ if +∞ = −∞ if −∞ = +∞ 0 −∞ if −∞ = +∞ +∞ if −∞ = −∞ −∞ +∞ + −∞
5 eqid +∞ = +∞
6 5 iftruei if +∞ = +∞ if −∞ = −∞ 0 +∞ if +∞ = −∞ if −∞ = +∞ 0 −∞ if −∞ = +∞ +∞ if −∞ = −∞ −∞ +∞ + −∞ = if −∞ = −∞ 0 +∞
7 eqid −∞ = −∞
8 7 iftruei if −∞ = −∞ 0 +∞ = 0
9 4 6 8 3eqtri +∞ + 𝑒 −∞ = 0