Metamath Proof Explorer


Theorem po0

Description: Any relation is a partial order on the empty set. (Contributed by NM, 28-Mar-1997) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion po0 RPo

Proof

Step Hyp Ref Expression
1 ral0 xyz¬xRxxRyyRzxRz
2 df-po RPoxyz¬xRxxRyyRzxRz
3 1 2 mpbir RPo