Metamath Proof Explorer


Theorem prmdvdssq

Description: Condition for a prime dividing a square. (Contributed by Scott Fenton, 8-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof shortened by SN, 21-Aug-2024)

Ref Expression
Assertion prmdvdssq PMPMPM2

Proof

Step Hyp Ref Expression
1 2nn 2
2 prmdvdsexp PM2PM2PM
3 1 2 mp3an3 PMPM2PM
4 3 bicomd PMPMPM2