Metamath Proof Explorer


Theorem prmrp

Description: Unequal prime numbers are relatively prime. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion prmrp PQPgcdQ=1PQ

Proof

Step Hyp Ref Expression
1 prmz QQ
2 coprm PQ¬PQPgcdQ=1
3 1 2 sylan2 PQ¬PQPgcdQ=1
4 prmuz2 PP2
5 dvdsprm P2QPQP=Q
6 4 5 sylan PQPQP=Q
7 6 necon3bbid PQ¬PQPQ
8 3 7 bitr3d PQPgcdQ=1PQ