Description: The second class argument to a product can be chosen so that it is always a set. (Contributed by Scott Fenton, 4-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | prod2id | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodeq2ii | |
|
2 | fvex | |
|
3 | fvi | |
|
4 | 2 3 | ax-mp | |
5 | 4 | eqcomi | |
6 | 5 | a1i | |
7 | 1 6 | mprg | |