Metamath Proof Explorer


Theorem prod2id

Description: The second class argument to a product can be chosen so that it is always a set. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Assertion prod2id kAB=kAIB

Proof

Step Hyp Ref Expression
1 prodeq2ii kAIB=IIBkAB=kAIB
2 fvex IBV
3 fvi IBVIIB=IB
4 2 3 ax-mp IIB=IB
5 4 eqcomi IB=IIB
6 5 a1i kAIB=IIB
7 1 6 mprg kAB=kAIB