Description: Lemma for prodrb . (Contributed by Scott Fenton, 4-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prodmo.1 | |
|
prodmo.2 | |
||
prodrb.3 | |
||
Assertion | prodrblem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodmo.1 | |
|
2 | prodmo.2 | |
|
3 | prodrb.3 | |
|
4 | mullid | |
|
5 | 4 | adantl | |
6 | 1cnd | |
|
7 | 3 | adantr | |
8 | iftrue | |
|
9 | 8 | adantl | |
10 | 2 | adantlr | |
11 | 9 10 | eqeltrd | |
12 | 11 | ex | |
13 | iffalse | |
|
14 | ax-1cn | |
|
15 | 13 14 | eqeltrdi | |
16 | 12 15 | pm2.61d1 | |
17 | 16 1 | fmptd | |
18 | uzssz | |
|
19 | 18 3 | sselid | |
20 | 17 19 | ffvelcdmd | |
21 | 20 | adantr | |
22 | elfzelz | |
|
23 | 22 | adantl | |
24 | simplr | |
|
25 | 19 | zcnd | |
26 | 25 | adantr | |
27 | 26 | adantr | |
28 | 1cnd | |
|
29 | 27 28 | npcand | |
30 | 29 | fveq2d | |
31 | 24 30 | sseqtrrd | |
32 | fznuz | |
|
33 | 32 | adantl | |
34 | 31 33 | ssneldd | |
35 | 23 34 | eldifd | |
36 | fveqeq2 | |
|
37 | eldifi | |
|
38 | eldifn | |
|
39 | 38 13 | syl | |
40 | 39 14 | eqeltrdi | |
41 | 1 | fvmpt2 | |
42 | 37 40 41 | syl2anc | |
43 | 42 39 | eqtrd | |
44 | 36 43 | vtoclga | |
45 | 35 44 | syl | |
46 | 5 6 7 21 45 | seqid | |