Metamath Proof Explorer


Theorem prodrb

Description: Rebase the starting point of a product. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses prodmo.1 F=kifkAB1
prodmo.2 φkAB
prodrb.4 φM
prodrb.5 φN
prodrb.6 φAM
prodrb.7 φAN
Assertion prodrb φseqM×FCseqN×FC

Proof

Step Hyp Ref Expression
1 prodmo.1 F=kifkAB1
2 prodmo.2 φkAB
3 prodrb.4 φM
4 prodrb.5 φN
5 prodrb.6 φAM
6 prodrb.7 φAN
7 1 2 3 4 5 6 prodrblem2 φNMseqM×FCseqN×FC
8 1 2 4 3 6 5 prodrblem2 φMNseqN×FCseqM×FC
9 8 bicomd φMNseqM×FCseqN×FC
10 uztric MNNMMN
11 3 4 10 syl2anc φNMMN
12 7 9 11 mpjaodan φseqM×FCseqN×FC