Metamath Proof Explorer


Theorem prprc

Description: An unordered pair containing two proper classes is the empty set. (Contributed by NM, 22-Mar-2006)

Ref Expression
Assertion prprc ¬AV¬BVAB=

Proof

Step Hyp Ref Expression
1 prprc1 ¬AVAB=B
2 snprc ¬BVB=
3 2 biimpi ¬BVB=
4 1 3 sylan9eq ¬AV¬BVAB=