Metamath Proof Explorer


Theorem psr1mulr

Description: Value of multiplication in a univariate power series ring. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses psr1plusg.y โŠขY=PwSer1โกR
psr1plusg.s โŠขS=1๐‘œmPwSerR
psr1mulr.n โŠขยทห™=โ‹…Y
Assertion psr1mulr โŠขยทห™=โ‹…S

Proof

Step Hyp Ref Expression
1 psr1plusg.y โŠขY=PwSer1โกR
2 psr1plusg.s โŠขS=1๐‘œmPwSerR
3 psr1mulr.n โŠขยทห™=โ‹…Y
4 1 psr1val โŠขY=1๐‘œordPwSerRโกโˆ…
5 0ss โŠขโˆ…โŠ†1๐‘œร—1๐‘œ
6 5 a1i โŠขโŠคโ†’โˆ…โŠ†1๐‘œร—1๐‘œ
7 2 4 6 opsrmulr โŠขโŠคโ†’โ‹…S=โ‹…Y
8 7 mptru โŠขโ‹…S=โ‹…Y
9 3 8 eqtr4i โŠขยทห™=โ‹…S