Metamath Proof Explorer


Theorem psseq12d

Description: An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004)

Ref Expression
Hypotheses psseq1d.1 φA=B
psseq12d.2 φC=D
Assertion psseq12d φACBD

Proof

Step Hyp Ref Expression
1 psseq1d.1 φA=B
2 psseq12d.2 φC=D
3 1 psseq1d φACBC
4 2 psseq2d φBCBD
5 3 4 bitrd φACBD