Metamath Proof Explorer


Theorem pstr

Description: A poset is transitive. (Contributed by NM, 12-May-2008) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion pstr RPosetRelARBBRCARC

Proof

Step Hyp Ref Expression
1 pslem RPosetRelARBBRCARCARARAARBBRAA=B
2 1 simp1d RPosetRelARBBRCARC
3 2 3impib RPosetRelARBBRCARC