Metamath Proof Explorer


Theorem psubcliN

Description: Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses psubclset.a A=AtomsK
psubclset.p ˙=𝑃K
psubclset.c C=PSubClK
Assertion psubcliN KDXCXA˙˙X=X

Proof

Step Hyp Ref Expression
1 psubclset.a A=AtomsK
2 psubclset.p ˙=𝑃K
3 psubclset.c C=PSubClK
4 1 2 3 ispsubclN KDXCXA˙˙X=X
5 4 biimpa KDXCXA˙˙X=X