Metamath Proof Explorer


Theorem psubcliN

Description: Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses psubclset.a
|- A = ( Atoms ` K )
psubclset.p
|- ._|_ = ( _|_P ` K )
psubclset.c
|- C = ( PSubCl ` K )
Assertion psubcliN
|- ( ( K e. D /\ X e. C ) -> ( X C_ A /\ ( ._|_ ` ( ._|_ ` X ) ) = X ) )

Proof

Step Hyp Ref Expression
1 psubclset.a
 |-  A = ( Atoms ` K )
2 psubclset.p
 |-  ._|_ = ( _|_P ` K )
3 psubclset.c
 |-  C = ( PSubCl ` K )
4 1 2 3 ispsubclN
 |-  ( K e. D -> ( X e. C <-> ( X C_ A /\ ( ._|_ ` ( ._|_ ` X ) ) = X ) ) )
5 4 biimpa
 |-  ( ( K e. D /\ X e. C ) -> ( X C_ A /\ ( ._|_ ` ( ._|_ ` X ) ) = X ) )