Metamath Proof Explorer


Theorem psubcli2N

Description: Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses psubcli2.p
|- ._|_ = ( _|_P ` K )
psubcli2.c
|- C = ( PSubCl ` K )
Assertion psubcli2N
|- ( ( K e. D /\ X e. C ) -> ( ._|_ ` ( ._|_ ` X ) ) = X )

Proof

Step Hyp Ref Expression
1 psubcli2.p
 |-  ._|_ = ( _|_P ` K )
2 psubcli2.c
 |-  C = ( PSubCl ` K )
3 eqid
 |-  ( Atoms ` K ) = ( Atoms ` K )
4 3 1 2 ispsubclN
 |-  ( K e. D -> ( X e. C <-> ( X C_ ( Atoms ` K ) /\ ( ._|_ ` ( ._|_ ` X ) ) = X ) ) )
5 4 simplbda
 |-  ( ( K e. D /\ X e. C ) -> ( ._|_ ` ( ._|_ ` X ) ) = X )