Step |
Hyp |
Ref |
Expression |
1 |
|
psubclsub.s |
|- S = ( PSubSp ` K ) |
2 |
|
psubclsub.c |
|- C = ( PSubCl ` K ) |
3 |
|
eqid |
|- ( _|_P ` K ) = ( _|_P ` K ) |
4 |
3 2
|
psubcli2N |
|- ( ( K e. HL /\ X e. C ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` X ) ) = X ) |
5 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
6 |
5 3 2
|
psubcliN |
|- ( ( K e. HL /\ X e. C ) -> ( X C_ ( Atoms ` K ) /\ ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` X ) ) = X ) ) |
7 |
6
|
simpld |
|- ( ( K e. HL /\ X e. C ) -> X C_ ( Atoms ` K ) ) |
8 |
5 1 3
|
polsubN |
|- ( ( K e. HL /\ X C_ ( Atoms ` K ) ) -> ( ( _|_P ` K ) ` X ) e. S ) |
9 |
7 8
|
syldan |
|- ( ( K e. HL /\ X e. C ) -> ( ( _|_P ` K ) ` X ) e. S ) |
10 |
5 1
|
psubssat |
|- ( ( K e. HL /\ ( ( _|_P ` K ) ` X ) e. S ) -> ( ( _|_P ` K ) ` X ) C_ ( Atoms ` K ) ) |
11 |
9 10
|
syldan |
|- ( ( K e. HL /\ X e. C ) -> ( ( _|_P ` K ) ` X ) C_ ( Atoms ` K ) ) |
12 |
5 1 3
|
polsubN |
|- ( ( K e. HL /\ ( ( _|_P ` K ) ` X ) C_ ( Atoms ` K ) ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` X ) ) e. S ) |
13 |
11 12
|
syldan |
|- ( ( K e. HL /\ X e. C ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` X ) ) e. S ) |
14 |
4 13
|
eqeltrrd |
|- ( ( K e. HL /\ X e. C ) -> X e. S ) |