Step |
Hyp |
Ref |
Expression |
1 |
|
psubclsub.s |
⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) |
2 |
|
psubclsub.c |
⊢ 𝐶 = ( PSubCl ‘ 𝐾 ) |
3 |
|
eqid |
⊢ ( ⊥𝑃 ‘ 𝐾 ) = ( ⊥𝑃 ‘ 𝐾 ) |
4 |
3 2
|
psubcli2N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ) → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑋 ) ) = 𝑋 ) |
5 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
6 |
5 3 2
|
psubcliN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ) → ( 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ∧ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑋 ) ) = 𝑋 ) ) |
7 |
6
|
simpld |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) |
8 |
5 1 3
|
polsubN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝑆 ) |
9 |
7 8
|
syldan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ) → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝑆 ) |
10 |
5 1
|
psubssat |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝑆 ) → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
11 |
9 10
|
syldan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ) → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
12 |
5 1 3
|
polsubN |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) ) → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑋 ) ) ∈ 𝑆 ) |
13 |
11 12
|
syldan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ) → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑋 ) ) ∈ 𝑆 ) |
14 |
4 13
|
eqeltrrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ∈ 𝑆 ) |