Metamath Proof Explorer


Theorem qliftfund

Description: The function F is the unique function defined by F[ x ] = A , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)

Ref Expression
Hypotheses qlift.1 F=ranxXxRA
qlift.2 φxXAY
qlift.3 φRErX
qlift.4 φXV
qliftfun.4 x=yA=B
qliftfund.6 φxRyA=B
Assertion qliftfund φFunF

Proof

Step Hyp Ref Expression
1 qlift.1 F=ranxXxRA
2 qlift.2 φxXAY
3 qlift.3 φRErX
4 qlift.4 φXV
5 qliftfun.4 x=yA=B
6 qliftfund.6 φxRyA=B
7 6 ex φxRyA=B
8 7 alrimivv φxyxRyA=B
9 1 2 3 4 5 qliftfun φFunFxyxRyA=B
10 8 9 mpbird φFunF