Description: The function F is the unique function defined by F[ x ] = A , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qlift.1 | |
|
qlift.2 | |
||
qlift.3 | |
||
qlift.4 | |
||
Assertion | qliftfuns | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.1 | |
|
2 | qlift.2 | |
|
3 | qlift.3 | |
|
4 | qlift.4 | |
|
5 | nfcv | |
|
6 | nfcv | |
|
7 | nfcsb1v | |
|
8 | 6 7 | nfop | |
9 | eceq1 | |
|
10 | csbeq1a | |
|
11 | 9 10 | opeq12d | |
12 | 5 8 11 | cbvmpt | |
13 | 12 | rneqi | |
14 | 1 13 | eqtri | |
15 | 2 | ralrimiva | |
16 | 7 | nfel1 | |
17 | 10 | eleq1d | |
18 | 16 17 | rspc | |
19 | 15 18 | mpan9 | |
20 | csbeq1 | |
|
21 | 14 19 3 4 20 | qliftfun | |