Metamath Proof Explorer


Theorem qliftfuns

Description: The function F is the unique function defined by F[ x ] = A , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)

Ref Expression
Hypotheses qlift.1 F=ranxXxRA
qlift.2 φxXAY
qlift.3 φRErX
qlift.4 φXV
Assertion qliftfuns φFunFyzyRzy/xA=z/xA

Proof

Step Hyp Ref Expression
1 qlift.1 F=ranxXxRA
2 qlift.2 φxXAY
3 qlift.3 φRErX
4 qlift.4 φXV
5 nfcv _yxRA
6 nfcv _xyR
7 nfcsb1v _xy/xA
8 6 7 nfop _xyRy/xA
9 eceq1 x=yxR=yR
10 csbeq1a x=yA=y/xA
11 9 10 opeq12d x=yxRA=yRy/xA
12 5 8 11 cbvmpt xXxRA=yXyRy/xA
13 12 rneqi ranxXxRA=ranyXyRy/xA
14 1 13 eqtri F=ranyXyRy/xA
15 2 ralrimiva φxXAY
16 7 nfel1 xy/xAY
17 10 eleq1d x=yAYy/xAY
18 16 17 rspc yXxXAYy/xAY
19 15 18 mpan9 φyXy/xAY
20 csbeq1 y=zy/xA=z/xA
21 14 19 3 4 20 qliftfun φFunFyzyRzy/xA=z/xA