| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qlift.1 |
⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 ) |
| 2 |
|
qlift.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) |
| 3 |
|
qlift.3 |
⊢ ( 𝜑 → 𝑅 Er 𝑋 ) |
| 4 |
|
qlift.4 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑦 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑥 [ 𝑦 ] 𝑅 |
| 7 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 |
| 8 |
6 7
|
nfop |
⊢ Ⅎ 𝑥 〈 [ 𝑦 ] 𝑅 , ⦋ 𝑦 / 𝑥 ⦌ 𝐴 〉 |
| 9 |
|
eceq1 |
⊢ ( 𝑥 = 𝑦 → [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) |
| 10 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐴 = ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
| 11 |
9 10
|
opeq12d |
⊢ ( 𝑥 = 𝑦 → 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 = 〈 [ 𝑦 ] 𝑅 , ⦋ 𝑦 / 𝑥 ⦌ 𝐴 〉 ) |
| 12 |
5 8 11
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 ) = ( 𝑦 ∈ 𝑋 ↦ 〈 [ 𝑦 ] 𝑅 , ⦋ 𝑦 / 𝑥 ⦌ 𝐴 〉 ) |
| 13 |
12
|
rneqi |
⊢ ran ( 𝑥 ∈ 𝑋 ↦ 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 ) = ran ( 𝑦 ∈ 𝑋 ↦ 〈 [ 𝑦 ] 𝑅 , ⦋ 𝑦 / 𝑥 ⦌ 𝐴 〉 ) |
| 14 |
1 13
|
eqtri |
⊢ 𝐹 = ran ( 𝑦 ∈ 𝑋 ↦ 〈 [ 𝑦 ] 𝑅 , ⦋ 𝑦 / 𝑥 ⦌ 𝐴 〉 ) |
| 15 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐴 ∈ 𝑌 ) |
| 16 |
7
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ 𝑌 |
| 17 |
10
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝑌 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ 𝑌 ) ) |
| 18 |
16 17
|
rspc |
⊢ ( 𝑦 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 𝐴 ∈ 𝑌 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ 𝑌 ) ) |
| 19 |
15 18
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ 𝑌 ) |
| 20 |
|
csbeq1 |
⊢ ( 𝑦 = 𝑧 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) |
| 21 |
14 19 3 4 20
|
qliftfun |
⊢ ( 𝜑 → ( Fun 𝐹 ↔ ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑅 𝑧 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) ) ) |