Metamath Proof Explorer


Theorem qliftf

Description: The domain and codomain of the function F . (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)

Ref Expression
Hypotheses qlift.1 F=ranxXxRA
qlift.2 φxXAY
qlift.3 φRErX
qlift.4 φXV
Assertion qliftf φFunFF:X/RY

Proof

Step Hyp Ref Expression
1 qlift.1 F=ranxXxRA
2 qlift.2 φxXAY
3 qlift.3 φRErX
4 qlift.4 φXV
5 1 2 3 4 qliftlem φxXxRX/R
6 1 5 2 fliftf φFunFF:ranxXxRY
7 df-qs X/R=y|xXy=xR
8 eqid xXxR=xXxR
9 8 rnmpt ranxXxR=y|xXy=xR
10 7 9 eqtr4i X/R=ranxXxR
11 10 a1i φX/R=ranxXxR
12 11 feq2d φF:X/RYF:ranxXxRY
13 6 12 bitr4d φFunFF:X/RY