Metamath Proof Explorer


Theorem qliftlem

Description: Lemma for theorems about a function lift. (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)

Ref Expression
Hypotheses qlift.1 F=ranxXxRA
qlift.2 φxXAY
qlift.3 φRErX
qlift.4 φXV
Assertion qliftlem φxXxRX/R

Proof

Step Hyp Ref Expression
1 qlift.1 F=ranxXxRA
2 qlift.2 φxXAY
3 qlift.3 φRErX
4 qlift.4 φXV
5 erex RErXXVRV
6 3 4 5 sylc φRV
7 ecelqsg RVxXxRX/R
8 6 7 sylan φxXxRX/R