Metamath Proof Explorer


Theorem fliftf

Description: The domain and range of the function F . (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses flift.1 F=ranxXAB
flift.2 φxXAR
flift.3 φxXBS
Assertion fliftf φFunFF:ranxXAS

Proof

Step Hyp Ref Expression
1 flift.1 F=ranxXAB
2 flift.2 φxXAR
3 flift.3 φxXBS
4 simpr φFunFFunF
5 1 2 3 fliftel φyFzxXy=Az=B
6 5 exbidv φzyFzzxXy=Az=B
7 6 adantr φFunFzyFzzxXy=Az=B
8 rexcom4 xXzy=Az=BzxXy=Az=B
9 19.42v zy=Az=By=Azz=B
10 elisset BSzz=B
11 3 10 syl φxXzz=B
12 11 biantrud φxXy=Ay=Azz=B
13 9 12 bitr4id φxXzy=Az=By=A
14 13 rexbidva φxXzy=Az=BxXy=A
15 14 adantr φFunFxXzy=Az=BxXy=A
16 8 15 bitr3id φFunFzxXy=Az=BxXy=A
17 7 16 bitrd φFunFzyFzxXy=A
18 17 abbidv φFunFy|zyFz=y|xXy=A
19 df-dm domF=y|zyFz
20 eqid xXA=xXA
21 20 rnmpt ranxXA=y|xXy=A
22 18 19 21 3eqtr4g φFunFdomF=ranxXA
23 df-fn FFnranxXAFunFdomF=ranxXA
24 4 22 23 sylanbrc φFunFFFnranxXA
25 1 2 3 fliftrel φFR×S
26 25 adantr φFunFFR×S
27 rnss FR×SranFranR×S
28 26 27 syl φFunFranFranR×S
29 rnxpss ranR×SS
30 28 29 sstrdi φFunFranFS
31 df-f F:ranxXASFFnranxXAranFS
32 24 30 31 sylanbrc φFunFF:ranxXAS
33 32 ex φFunFF:ranxXAS
34 ffun F:ranxXASFunF
35 33 34 impbid1 φFunFF:ranxXAS