Metamath Proof Explorer


Theorem qliftval

Description: The value of the function F . (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)

Ref Expression
Hypotheses qlift.1 F=ranxXxRA
qlift.2 φxXAY
qlift.3 φRErX
qlift.4 φXV
qliftval.4 x=CA=B
qliftval.6 φFunF
Assertion qliftval φCXFCR=B

Proof

Step Hyp Ref Expression
1 qlift.1 F=ranxXxRA
2 qlift.2 φxXAY
3 qlift.3 φRErX
4 qlift.4 φXV
5 qliftval.4 x=CA=B
6 qliftval.6 φFunF
7 1 2 3 4 qliftlem φxXxRX/R
8 eceq1 x=CxR=CR
9 1 7 2 8 5 6 fliftval φCXFCR=B