Metamath Proof Explorer


Theorem r19.12

Description: Restricted quantifier version of 19.12 . (Contributed by NM, 15-Oct-2003) (Proof shortened by Andrew Salmon, 30-May-2011) Avoid ax-13 , ax-ext . (Revised by Wolf Lammen, 17-Jun-2023) (Proof shortened by Wolf Lammen, 4-Nov-2024)

Ref Expression
Assertion r19.12 xAyBφyBxAφ

Proof

Step Hyp Ref Expression
1 df-rex xAyBφxxAyBφ
2 nfv yxA
3 nfra1 yyBφ
4 2 3 nfan yxAyBφ
5 4 nfex yxxAyBφ
6 1 5 nfxfr yxAyBφ
7 rsp yBφyBφ
8 7 com12 yByBφφ
9 8 reximdv yBxAyBφxAφ
10 9 com12 xAyBφyBxAφ
11 6 10 ralrimi xAyBφyBxAφ