Metamath Proof Explorer


Theorem r19.21v

Description: Restricted quantifier version of 19.21v . (Contributed by NM, 15-Oct-2003) (Proof shortened by Andrew Salmon, 30-May-2011) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020) (Proof shortened by Wolf Lammen, 11-Dec-2024)

Ref Expression
Assertion r19.21v xAφψφxAψ

Proof

Step Hyp Ref Expression
1 pm2.27 φφψψ
2 1 ralimdv φxAφψxAψ
3 2 com12 xAφψφxAψ
4 pm2.21 ¬φφψ
5 4 ralrimivw ¬φxAφψ
6 ax-1 ψφψ
7 6 ralimi xAψxAφψ
8 5 7 ja φxAψxAφψ
9 3 8 impbii xAφψφxAψ