Metamath Proof Explorer


Theorem r19.26-2

Description: Restricted quantifier version of 19.26-2 . Version of r19.26 with two quantifiers. (Contributed by NM, 10-Aug-2004)

Ref Expression
Assertion r19.26-2 xAyBφψxAyBφxAyBψ

Proof

Step Hyp Ref Expression
1 r19.26 yBφψyBφyBψ
2 1 ralbii xAyBφψxAyBφyBψ
3 r19.26 xAyBφyBψxAyBφxAyBψ
4 2 3 bitri xAyBφψxAyBφxAyBψ