Metamath Proof Explorer


Theorem r19.26

Description: Restricted quantifier version of 19.26 . (Contributed by NM, 28-Jan-1997) (Proof shortened by Andrew Salmon, 30-May-2011)

Ref Expression
Assertion r19.26 xAφψxAφxAψ

Proof

Step Hyp Ref Expression
1 simpl φψφ
2 1 ralimi xAφψxAφ
3 simpr φψψ
4 3 ralimi xAφψxAψ
5 2 4 jca xAφψxAφxAψ
6 pm3.2 φψφψ
7 6 ral2imi xAφxAψxAφψ
8 7 imp xAφxAψxAφψ
9 5 8 impbii xAφψxAφxAψ