Metamath Proof Explorer


Theorem r19.28z

Description: Restricted quantifier version of Theorem 19.28 of Margaris p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010)

Ref Expression
Hypothesis r19.3rz.1 xφ
Assertion r19.28z AxAφψφxAψ

Proof

Step Hyp Ref Expression
1 r19.3rz.1 xφ
2 r19.26 xAφψxAφxAψ
3 1 r19.3rz AφxAφ
4 3 anbi1d AφxAψxAφxAψ
5 2 4 bitr4id AxAφψφxAψ