Metamath Proof Explorer


Theorem r19.29a

Description: A commonly used pattern in the spirit of r19.29 . (Contributed by Thierry Arnoux, 22-Nov-2017) Reduce axiom usage. (Revised by Wolf Lammen, 17-Jun-2023)

Ref Expression
Hypotheses r19.29a.1 φxAψχ
r19.29a.2 φxAψ
Assertion r19.29a φχ

Proof

Step Hyp Ref Expression
1 r19.29a.1 φxAψχ
2 r19.29a.2 φxAψ
3 1 rexlimdva2 φxAψχ
4 2 3 mpd φχ