Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
r19.29a
Metamath Proof Explorer
Description: A commonly used pattern in the spirit of r19.29 . (Contributed by Thierry Arnoux , 22-Nov-2017) Reduce axiom usage. (Revised by Wolf
Lammen , 17-Jun-2023)
Ref
Expression
Hypotheses
r19.29a.1
⊢ φ ∧ x ∈ A ∧ ψ → χ
r19.29a.2
⊢ φ → ∃ x ∈ A ψ
Assertion
r19.29a
⊢ φ → χ
Proof
Step
Hyp
Ref
Expression
1
r19.29a.1
⊢ φ ∧ x ∈ A ∧ ψ → χ
2
r19.29a.2
⊢ φ → ∃ x ∈ A ψ
3
1
rexlimdva2
⊢ φ → ∃ x ∈ A ψ → χ
4
2 3
mpd
⊢ φ → χ