Metamath Proof Explorer


Theorem ralimdv2

Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005)

Ref Expression
Hypothesis ralimdv2.1 φxAψxBχ
Assertion ralimdv2 φxAψxBχ

Proof

Step Hyp Ref Expression
1 ralimdv2.1 φxAψxBχ
2 1 alimdv φxxAψxxBχ
3 df-ral xAψxxAψ
4 df-ral xBχxxBχ
5 2 3 4 3imtr4g φxAψxBχ