Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
r19.29af
Metamath Proof Explorer
Description: A commonly used pattern based on r19.29 . See r19.29a , r19.29an for a variant when x is disjoint from ph . (Contributed by Thierry Arnoux , 29-Nov-2017)
Ref
Expression
Hypotheses
r19.29af.0
⊢ Ⅎ x φ
r19.29af.1
⊢ φ ∧ x ∈ A ∧ ψ → χ
r19.29af.2
⊢ φ → ∃ x ∈ A ψ
Assertion
r19.29af
⊢ φ → χ
Proof
Step
Hyp
Ref
Expression
1
r19.29af.0
⊢ Ⅎ x φ
2
r19.29af.1
⊢ φ ∧ x ∈ A ∧ ψ → χ
3
r19.29af.2
⊢ φ → ∃ x ∈ A ψ
4
nfv
⊢ Ⅎ x χ
5
1 4 2 3
r19.29af2
⊢ φ → χ