Metamath Proof Explorer


Theorem reximd2a

Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of Margaris p. 90. (Contributed by Thierry Arnoux, 27-Jan-2020)

Ref Expression
Hypotheses reximd2a.1 x φ
reximd2a.2 φ x A ψ x B
reximd2a.3 φ x A ψ χ
reximd2a.4 φ x A ψ
Assertion reximd2a φ x B χ

Proof

Step Hyp Ref Expression
1 reximd2a.1 x φ
2 reximd2a.2 φ x A ψ x B
3 reximd2a.3 φ x A ψ χ
4 reximd2a.4 φ x A ψ
5 2 3 jca φ x A ψ x B χ
6 5 expl φ x A ψ x B χ
7 1 6 eximd φ x x A ψ x x B χ
8 df-rex x A ψ x x A ψ
9 df-rex x B χ x x B χ
10 7 8 9 3imtr4g φ x A ψ x B χ
11 4 10 mpd φ x B χ