Metamath Proof Explorer


Theorem reximd2a

Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of Margaris p. 90. (Contributed by Thierry Arnoux, 27-Jan-2020)

Ref Expression
Hypotheses reximd2a.1 𝑥 𝜑
reximd2a.2 ( ( ( 𝜑𝑥𝐴 ) ∧ 𝜓 ) → 𝑥𝐵 )
reximd2a.3 ( ( ( 𝜑𝑥𝐴 ) ∧ 𝜓 ) → 𝜒 )
reximd2a.4 ( 𝜑 → ∃ 𝑥𝐴 𝜓 )
Assertion reximd2a ( 𝜑 → ∃ 𝑥𝐵 𝜒 )

Proof

Step Hyp Ref Expression
1 reximd2a.1 𝑥 𝜑
2 reximd2a.2 ( ( ( 𝜑𝑥𝐴 ) ∧ 𝜓 ) → 𝑥𝐵 )
3 reximd2a.3 ( ( ( 𝜑𝑥𝐴 ) ∧ 𝜓 ) → 𝜒 )
4 reximd2a.4 ( 𝜑 → ∃ 𝑥𝐴 𝜓 )
5 2 3 jca ( ( ( 𝜑𝑥𝐴 ) ∧ 𝜓 ) → ( 𝑥𝐵𝜒 ) )
6 5 expl ( 𝜑 → ( ( 𝑥𝐴𝜓 ) → ( 𝑥𝐵𝜒 ) ) )
7 1 6 eximd ( 𝜑 → ( ∃ 𝑥 ( 𝑥𝐴𝜓 ) → ∃ 𝑥 ( 𝑥𝐵𝜒 ) ) )
8 df-rex ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥 ( 𝑥𝐴𝜓 ) )
9 df-rex ( ∃ 𝑥𝐵 𝜒 ↔ ∃ 𝑥 ( 𝑥𝐵𝜒 ) )
10 7 8 9 3imtr4g ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 → ∃ 𝑥𝐵 𝜒 ) )
11 4 10 mpd ( 𝜑 → ∃ 𝑥𝐵 𝜒 )