Step |
Hyp |
Ref |
Expression |
1 |
|
reximd2a.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
reximd2a.2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜓 ) → 𝑥 ∈ 𝐵 ) |
3 |
|
reximd2a.3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜓 ) → 𝜒 ) |
4 |
|
reximd2a.4 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) |
5 |
2 3
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜓 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) |
6 |
5
|
expl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) ) |
7 |
1 6
|
eximd |
⊢ ( 𝜑 → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) ) |
8 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
9 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐵 𝜒 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) |
10 |
7 8 9
|
3imtr4g |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 → ∃ 𝑥 ∈ 𝐵 𝜒 ) ) |
11 |
4 10
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 𝜒 ) |