Step |
Hyp |
Ref |
Expression |
1 |
|
reximd2a.1 |
|- F/ x ph |
2 |
|
reximd2a.2 |
|- ( ( ( ph /\ x e. A ) /\ ps ) -> x e. B ) |
3 |
|
reximd2a.3 |
|- ( ( ( ph /\ x e. A ) /\ ps ) -> ch ) |
4 |
|
reximd2a.4 |
|- ( ph -> E. x e. A ps ) |
5 |
2 3
|
jca |
|- ( ( ( ph /\ x e. A ) /\ ps ) -> ( x e. B /\ ch ) ) |
6 |
5
|
expl |
|- ( ph -> ( ( x e. A /\ ps ) -> ( x e. B /\ ch ) ) ) |
7 |
1 6
|
eximd |
|- ( ph -> ( E. x ( x e. A /\ ps ) -> E. x ( x e. B /\ ch ) ) ) |
8 |
|
df-rex |
|- ( E. x e. A ps <-> E. x ( x e. A /\ ps ) ) |
9 |
|
df-rex |
|- ( E. x e. B ch <-> E. x ( x e. B /\ ch ) ) |
10 |
7 8 9
|
3imtr4g |
|- ( ph -> ( E. x e. A ps -> E. x e. B ch ) ) |
11 |
4 10
|
mpd |
|- ( ph -> E. x e. B ch ) |