Metamath Proof Explorer


Theorem reximd2a

Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of Margaris p. 90. (Contributed by Thierry Arnoux, 27-Jan-2020)

Ref Expression
Hypotheses reximd2a.1
|- F/ x ph
reximd2a.2
|- ( ( ( ph /\ x e. A ) /\ ps ) -> x e. B )
reximd2a.3
|- ( ( ( ph /\ x e. A ) /\ ps ) -> ch )
reximd2a.4
|- ( ph -> E. x e. A ps )
Assertion reximd2a
|- ( ph -> E. x e. B ch )

Proof

Step Hyp Ref Expression
1 reximd2a.1
 |-  F/ x ph
2 reximd2a.2
 |-  ( ( ( ph /\ x e. A ) /\ ps ) -> x e. B )
3 reximd2a.3
 |-  ( ( ( ph /\ x e. A ) /\ ps ) -> ch )
4 reximd2a.4
 |-  ( ph -> E. x e. A ps )
5 2 3 jca
 |-  ( ( ( ph /\ x e. A ) /\ ps ) -> ( x e. B /\ ch ) )
6 5 expl
 |-  ( ph -> ( ( x e. A /\ ps ) -> ( x e. B /\ ch ) ) )
7 1 6 eximd
 |-  ( ph -> ( E. x ( x e. A /\ ps ) -> E. x ( x e. B /\ ch ) ) )
8 df-rex
 |-  ( E. x e. A ps <-> E. x ( x e. A /\ ps ) )
9 df-rex
 |-  ( E. x e. B ch <-> E. x ( x e. B /\ ch ) )
10 7 8 9 3imtr4g
 |-  ( ph -> ( E. x e. A ps -> E. x e. B ch ) )
11 4 10 mpd
 |-  ( ph -> E. x e. B ch )