Metamath Proof Explorer


Theorem ralbida

Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Oct-2003) (Proof shortened by Wolf Lammen, 31-Oct-2024)

Ref Expression
Hypotheses ralbida.1 xφ
ralbida.2 φxAψχ
Assertion ralbida φxAψxAχ

Proof

Step Hyp Ref Expression
1 ralbida.1 xφ
2 ralbida.2 φxAψχ
3 2 biimpd φxAψχ
4 1 3 ralimdaa φxAψxAχ
5 2 biimprd φxAχψ
6 1 5 ralimdaa φxAχxAψ
7 4 6 impbid φxAψxAχ