Metamath Proof Explorer


Theorem ralimdaa

Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of Margaris p. 90. (Contributed by NM, 22-Sep-2003) (Proof shortened by Wolf Lammen, 29-Dec-2019)

Ref Expression
Hypotheses ralimdaa.1 x φ
ralimdaa.2 φ x A ψ χ
Assertion ralimdaa φ x A ψ x A χ

Proof

Step Hyp Ref Expression
1 ralimdaa.1 x φ
2 ralimdaa.2 φ x A ψ χ
3 2 ex φ x A ψ χ
4 1 3 ralrimi φ x A ψ χ
5 ralim x A ψ χ x A ψ x A χ
6 4 5 syl φ x A ψ x A χ