Metamath Proof Explorer


Theorem ralimdaa

Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of Margaris p. 90. (Contributed by NM, 22-Sep-2003) (Proof shortened by Wolf Lammen, 29-Dec-2019)

Ref Expression
Hypotheses ralimdaa.1 𝑥 𝜑
ralimdaa.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
Assertion ralimdaa ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 → ∀ 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralimdaa.1 𝑥 𝜑
2 ralimdaa.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
3 2 ex ( 𝜑 → ( 𝑥𝐴 → ( 𝜓𝜒 ) ) )
4 1 3 ralrimi ( 𝜑 → ∀ 𝑥𝐴 ( 𝜓𝜒 ) )
5 ralim ( ∀ 𝑥𝐴 ( 𝜓𝜒 ) → ( ∀ 𝑥𝐴 𝜓 → ∀ 𝑥𝐴 𝜒 ) )
6 4 5 syl ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 → ∀ 𝑥𝐴 𝜒 ) )